Reference

supports parallel processingwith dynamic memory allocation

Content

1 Reference	2
2 History	

Modules

debris flow	non-newtonian fluids
sediment	mobile bed calculation
concentration	advective transport (pollution, thermal inlets)

1 Reference

Input	Unit	Description
title 'name'	string	'name' is a string (max. 64 characters) that is stored on the result file and appears in the header of the plots
>>global		main keyword for the definition of default values holding for all models
kst r	m ^{1/3} /s	global Strickler value (default=30)
n r	SI	default Manning's n value
ks r	m	equivalent sand roughness diameter
damping_on		considers reduction of turbulent shear forces for small flow depths (Bezzola 2002) in combination with logaritmic friction law (sand roughness ks).
label 'xx' r	string	name of a label (max. 4 characters) to which the Strickler-value r is related
hdry r	m	minimum flow depth where flow equations are being solved (for 2D model, default=0.01 m)
adry r	m²	minimum wetted area of cross-section where flow equations are being solved (for 1D model, default=0.1 m^2)
slot_width r	m	width of (Preissmann-) slot used for calculation of pressurised flows (see option >>branch/closed) (default=0.1 m)
unit 'name'	string	Defines unit of input data. Possible units are: - 'minutes' for time given in minutes (instead of hour)
date 'mmddhh'	string	real time of start of simulation (mm=month, dd=day, hh=hour)
yield_stress	N/m ²	yield stress for debris flow calculations (default = 0)
friction_slope	-	Tangens of internal friction angle $\tan \delta$ for debris flow calculations (default = 0) with viscous stress $\tau_y = \rho g h \tan \delta$. Note: If both yield stress and friction slope are defined, the sum of the two values is taken.
<pre>bingham_viscosity</pre>	Pas	Bingham viscosity μ_{B} for debris flow calculations (default = 0)
		with Bingham shear stress $\tau_B = \frac{3\mu_B q}{\hbar^2}$.
		Note: If both turbulent friction (n, kst, or ks) and bingham viscosity is defined, the maximum of the two resulting stress values is taken.
roughness_factor	-	factor to estimate roughness diameter from mean grain-size
		parameters for integration of 1D models
seam_radius r	m	maximum distance from section-midpoints to cell-boundaries (of 2D mesh) where a seam (flow) can exist (used for connecting different flow models) (default = 10 m)
<pre>weir_coefficient</pre>	-	Poleni coefficient for calculation of fluxes between 1D and 2D models (default = 0.60)
concentration 'name'	string	activates advective transport simulation

Input	Unit	Description		
>>sediment		parameters for mobile bed calculation		
thcrit r	-	critical shields factor for MPM and Smart/Jäggi formula (default=0.05)		
repose r	-	tangens of angle of repose of bank material (default=0.67)		
density r	kg/m³	density of the bed material (default=2650 kg/m³)		
porosity r	-	porosity of the bed material (default=0.30)		
formula 'name'	-	 sediment transport formula to be used: <i>mpm</i> = Meyer-Peter/Müller formula. <i>parker78</i> = Parker formula for uniform grain size 		
<pre>rock_thcrit r</pre>	-	critical shields factor for transport over bedrock (default=0.01)		
rock_factor r	-	factor to account for transport over bedrock (default=1.8)		
mpm_factor r	-	factor used in transport formula of Meyer-Peter/Müller (default=8.0)		
mixture 'name' 0.2 0. 	cm	grain size distribution of sediment mixture where the the grain size [cm] and the cumulative probability (sediment finer) are given in the 1^{st} and 2^{nd} column. Note: The last value in the 1^{st} column must be 1.0.		
25. 1.				
		to define parameters for unstandy flow computation		
	h	start time of the simulation (default=0)		
ond r	h	time where simulation will and (default-100b)		
end r	-	limiting CEL number to estimate size of time step (default=0.6)		
frequency i	_	refresh rate of display output (default=100)		
hatch mode		runs the model in batch model i.e. starts the computation		
bucch_mode		stores the results on the specified file, and terminates		
plot_interval	h	interval to store sediment output on file sed.out (default= 8760)		
num_threads i	-	Maximum number of threads for computation (default = 1). Speeds up calculation on systems with multi-core (multi-thread) CPU's.		
steady_flow r	m³/s	stores results (only) if balance of in- and outflow falls below given level (assuming steady flow condition) and then jumps to the next time value of inflow hydrograph.		
>>create model		main keyword for the specification of model-specific parameters		
name 'name'	string	name of model (displayed on model output)		
type '2D'	-	 type of model: '1D' for one-dimensional flow calculations (river branch) '2D' for two-dimensional flow calculations 		
>>init		definition of the calculation domain		

Input	Unit	Description	
mesh 'name'	string	reads the mesh geometry from files. Supported formats are: .node created by program TRIANGLE (file name without suffix!) .2dm	
		created by program SMS (splits 4-noded elements to triangles) .tin	
		triangulated irregular network format (used in ems-i programs)	
binary ´name´	string	reads mesh geometry and initial conditions (flow depths, flow and bedlevels) from a binary file created by a previous run. Note: Use either mesh or binary (not both) for the definition of the mesh geometry.	
at r	h	time level r of initial condition to be read form the binary file.	
bedlevel =+-<> 'name'		reads a mesh geometry from files created by program triangle. Depending on the operator it changes the level of the model bed. Example:	
		bedlevel = 'new_dam.1'	
		<pre>will read the bedlevel values from the mesh defined by the files new_dam.1.node and new_dam.1.ele. Possible operators are: = new bedlevel + lift the bedlevel - lower the bedlevel < maximum bedlevel > minimum bedlevel Note: Must be used in combination with mesh (not binary).</pre>	
<pre>waterlevel =+-<> 'name'</pre>		Same as option bedlevel (see row above) but operates on waterlevels. Note: Must be defined after definition of bedlevels.	
rocklevel =+-<> 'name'		The operators assume the bedlevel as a reference: = new rocklevel + lift rocklevel above bedlevel - lower rocklevel below bedlevel < rocklevel below bedlevel > rocklevel above bedlevel Note: Bedlevels are lifted to the rocklevel.	
dmo 'name'		reads variable grain size as a mesh created by program triangle ("name.node" and "name.ele"). To be used for uniform grain size calculation (unit [cm]).	
>>polygon		used to define values that hold in a domain defined by a closed polygon. Example:	
		<pre>>>polygon</pre>	

Input	Unit	Description
bedlevel =+-<> r	m	<pre>to modify the bedlevels by a value r using an operator (see keyword >>init/bedlevel for meaning of operators). Example: bedlevel > 321.0 ! minimum bed level is 321 m 100. 150. 320. 165. 240. 190. 105. 155.</pre>
flowdepth r	m	flow depth at start time (initial condition)
ks r	m	equivalent sand roughness diameter
kst r	SI	Manning-Strickler value
n r	SI	Manning's n value
vegetation r	1/m	vegetation factor given by the formula $vegetation = \frac{d}{a^2}c_w$ with d = diameter of vegetation elements [m] a = distance
		between elements [m] and $c_w = drag$ coefficient (range 0.8 – 1.5). Can be used to account for drift wood effects (see >>drift).
waterlevel r	m	water level at start time (initial condition)
concentration r	-	concentration at start time (initial condition; default = 0)
bridge r	m	level of a bridge (z_{bridge}) to account for backwater effects. It accounts for the acceleration of the flow due to the reduced flow section. It does <u>not</u> account for external forces on the bridge plate or other effects such as flow contraction (gated flows).
		zbridge ——
no_seam x1 y1 x2 y2 	-	closed polygon to define cells that do not connect to 1D- branches.
>>boundary		used to define (time-dependent) boundary conditions at the model boundaries that are inside a polygon. The polygon covers all the edges of the calculation mesh where the boundary condition holds. It must not match exactly with the edges. The steps are: (1) Define a boundary type (e.g. an inflow) (2) Define the location where the boundary holds by a closed polygon using the keyword location.
inflow r uniform_slope r	m³/s -	defines an inflow discharge (** for time dependent inflow). The discharge is distributed among the boundary cells assuming uniform flow conditions given the slope of the energy head (uniform_slope, default = 0.001).
critical		defines an outflow boundary with a critical flow regime (no backwater effect)
slope r	-	defines an outflow boundary with r = energy slope

Reference

Input	Unit	Description
waterlevel r	m	defines an outflow boundary with r = water level
stage-discharge z1 q1 z2 q2 		defines an stage-discharge outflow boundary with z=water level [m] and q=discharge [m³/s]
		Example (i) Given an inflow increasing from 5 to 100 m^3 /s within half an hour at a boundary where the mean slope is approx. 0.5%. The boundary condition reads
		<pre>>>boundary inflow ** 0. 5. 0.5 100. uniform_slope 0.005 location 100. 150. 100. 150. 200. 200. 100. 200.</pre>
		Example (ii) At an outflow boundary the water level rises from 96.5 m to 98.0 m during half an hour and returns to the old value after one hour. The outflow has to be stored on the file 'waterlevel.out' for further usage. The boundary condition reads
		<pre>>>boundary waterlevel ** > 'waterlevel.out' 0.0 96.5 0.5 98.0 1.0 96.5 location 900. 150. 930. 155. 950. 240. 910. 260.</pre>
concentration r	[-]	concentration of the inflow (defined above)
>>structure		to define internal sources and structures (culverts, weirs, controls)
culvert x1 y1 x2 y2	m	defines the flow through a circular or rectangular <u>culvert</u> with $(x1,y1)$ and $(x2,y2) =$ co-ordinates of the in- and outlet. The module accounts for in- or outlet controlled flow condition. It is assumed that the vertical level of the in- and outlet corresponds to the bed level of the adjacent grid cell.
		Example: culvert x1 y1 x2 y2 > ´name´ writes the discharge through the culvert to file ´name´
diameter r	m	diameter of circular culvert (default= 1 m)
width r	m	width of rectangular culvert
height r	m	height of rectangular culvert.
n r	SI	Manning´s n value of culvert [default= 0.02].

Input	Unit	Description
kst r	SI	Strickler value of culvert [default= 50].
inlet_loss r	-	inlet loss coefficient that depends on shape of culvert inlet. Values usually vary between 0.2 (rounded entrance) and 0.7 (sharp crested entrance)(default= 0.5).
maximum r	m³/s	maximum discharge through culvert (** for time table).
weir zw cw		flow over weir with $zw =$ level of weir crest [m] and $cw =$ poleni coefficient (default = 0.58). Flow over weir can be written to a file by adding > 'filename'. Example:
		<pre>weir 433.65 0.64 > 'weirflow.out' location</pre>
		Time_dependent weir levels are defined in a table where the time [h] and the weir_crest are given in the first and second column, respectively. Example:
		weir ** 0.64 0.0 433.65 0.8 434.15 1.5 433.80 location
gate zg cg	m,-	flow through gate with $zg =$ level of the lower end of the sluice gate (see figure) and $cg =$ contraction coefficient (default = 0.62). Flow through gate can be written to a file by adding > 'filename'. Example:
		<pre>gate 426.45 0.80 > 'gateflow.out' location</pre>
		Time_dependent gate openings are defined in a table where the time [h] and the opening are given in the first and second column, respectively. Example:
		gate ** 0.80 0.0 426.45 0.1 425.00 location
control_gauge x y z ı	m,m,m	water level control with reference level z [m] at position defined by co-ordinates x,y. Control values can be written to a file by adding $>$ 'filename'.
control_param dt u zm	qm	 parameters of level control (fictitious weir): dt = time lag [s] between adjustment of weir level u = velocity [m/s] of weir level adjustment zm = minimum weir crest [m] (default=-9999.) qm = maximum weir flow [m3/s] (default=9999.)

Input	Unit	Description
control_init zw	m	initial level of (fictitious weir) crest (default: control level)
		Example: control_gauge 29.5 94.8 433.65 >'control.out' control_param 120. 0.002 431.0 500. control_init 433.20 location
location x1 y1 x2 y2 		location of weir/gate/control section defined as a set of vertices with x- and y- coordinates in first and second column, respectively.
pile x y d cD		accounts for drag forces on a pile (pier) at location x,y with d= diameter [m], $cD = drag$ coefficient (default = 1.0 for circular shape).
cross-pile z d cD xA yA xB yB		accounts for drag forces on a horizontal element that spans from A to B with $z = \text{level } [\text{m}]$, $d = \text{diameter } [\text{m}]$, $cD = \text{drag}$ coefficient (default = 1.0 for circular shape).
		A B z
		Hint: Cross-piles can be used to model drag forces due to bridge plates.
>>variation		is used to define variation of model parameters during simulation
bedlevel =+-<> ** t1 r1 t2 r2	m	definition of time-dependent values of bed level using an operator (see keyword >>init/bedlevel for meaning of operators).
rocklevel = ** t1 r1 t2 r2	m	definition of time-dependent values of rock level (for bed load calculation).
location		co-ordinates of polygon vertices to define location of variation.
deposit r1 r2 r3 r4 r	5	adds depth of flow to the bed level (to account for deposition of debris flow) at time r1 [h]. Simultaneous the global (rheological) parameters can be changed: kst (r2), yield_stress (r3), friction_slope (r4), and bingham_viscosity (r5)
>>source		internal sources (feeder) or sinks
discharge q	m³/s	total water (fluid) inflow. For unsteady inflows (hydrographs) write '**' and add a timetable of the inflows.
concentration r	[-]	concentration of the discharge (defined above)
sediment r	kg/s	sediment inflow (r=** for unsteady inflows).
point x y		location of point source with coordinates x , y

FLUMEN v3.0			Reference
Input	Unit	Description	
area xl yl x2 y2 		defines an area (closed polygo or sediment) is equally distribute	n) where the source (discharge ed.
<pre>>sediment</pre>		the following data is related to b	ed load calculations
dmo r	cm	reads mean diameter of grains (valid for whole domain)
inflow r	kg/s	sediment inflow (r=** for unstead	dy inflows).
location x1 y1 x2 y2		location of sediment inflow (feed	ler) given as a closed polygon
>>output		is used to define the output from	n the model
prefix 'name'	string	results are written to file name.res (binary for review) and name.out (input reading)	
interval r	h	interval between time steps to be stored on result file (default = $1 h$)	
hydrograph 'item' x	y > 'f:	ilename'	
		writes nodal value at location (x Accepted items are:	y) as a hydrograph table to file.
		'bedlevel'	bed level [m s. l.]
		'waterlevel'	water level [m s. l.]
		'depth'	flow depth [m]
		'flow'	Specific flow [m2/s]
		'velocity'	flow velocity [m/s]
write 'item' at r >	· 'filenr	name'	
		write nodal values at time r [accepted items.	h] to file. See table above for
flow > 'fname' x1 y1 x2 y2 		writes total flow across a section to file 'fname'. The section must be defined as a polygon with vertices x,y. The location of edges can be displayed with Show/Mesh option. Note that the direction of the flow is <u>not</u> considered	
<pre>sediment > 'fname' x1 y1 x2 y2</pre>		writes sediment flow across a section to file 'fname'. The section must be defined as a polygon with vertices x,y. The location of edges can be displayed with Show/Mesh option. Note that the direction of the flow is <u>not</u> considered	

>>

denotes the end of the input. Any further input is ignored.

2 History

Version 3.0 (2016-)

- unlimited model size (allocatable arrays)
- parallel processing (multi-thread CPU's)
- additional parameters for control structures (weir crest, discharge, initial level)
- convective transport (e.g. concentration or temperature)
- storage saving for steady flow calculations

Version 2.3 (2014-15)

- >>variation for time-dependent rocklevels
- adjustment of stress terms for debris flow calculations

Version 2.2 (2011-2013)

- module to account for coarse woody debris
- bingham like friction law for debris flow calculations.
- >>variation for adjusting values (e.g. bedlevels) in time.

Version 2.1 (2009-2011)

- accepts mesh geometries in .2dm format created by SMS (Surface water Modeling System) and .tin format (see <u>description</u>)
- serial linking of 2d and 1d models
- · cross-piles to account for hydraulic resistance of horizontal structures such as bridges
- · export of results in (ESRI) shape format
- simplified input for flow over weirs and gated flows
- modeling of water level controls (e.g. hydro power stations)
- modeling debris flow with two-parameter approach (turbulent & yield)

Version 2.0 (2006-2009)

- improved integration of multiple models (1D and 2D)
- accepts project files to change river bed topography

Version 1.0 - 1.3 (1999-2005)

- development of breaches during simulation time
- variable bed_evolution values and boundary conditions
- animated output (movies)
- modelling of precipitation/evaporation
- energy losses due to vegetation
- improved interpolation of bed level for narrow dams
- backwater effects due to bridges
- time dependent boundary conditions
- · distributed inflow discharge assuming uniform flow conditions
- · culvert flow to connect model domains
- · weir and gated flow over cell edges
- friction values (kst or n) defined with closed polygons (mesh independent)
- wetting and drying of cells