Reference

supports parallel processing

Content

1 Reference	2
2 History	10

<u>www.fluvial.ch</u> 05-2018 1/10

1 Reference

Input	Unit	Description
title 'name'	string	'name' is a string (max. 64 characters) that is stored on the result file and appears in the header of the plots
>>global		main keyword for the definition of default values holding for all models
kst r	m ^{1/3} /s	global Strickler value (default=30)
n r	SI	default Manning's n value
ks r	m	equivalent sand roughness diameter
damping_on		considers reduction of turbulent shear forces for small flow depths (Bezzola 2002) in combination with logaritmic friction law (sand roughness ks).
label 'xx' r	string	name of a label (max. 4 characters) to which the Strickler-value r is related
hdry r	m	minimum flow depth where flow equations are being solved (for 2D model, default=0.01 m)
adry r	m²	minimum wetted area of cross-section where flow equations are being solved (for 1D model, default=0.1 m^2)
slot_width r	m	width of (Preissmann-) slot used for calculation of pressurised flows (see option >>branch/closed) (default=0.1 m)
unit 'name'	string	Defines unit of input data. Possible units are: - 'minutes' for time given in minutes (instead of hour)
date 'mmddhh'	string	real time of start of simulation (mm=month, dd=day, hh=hour)
yield_stress	N/m²	yield stress for debris flow calculations (default = 0)
friction_slope	-	Tangens of internal friction angle $\tan\delta$ for debris flow calculations (default = 0) with viscous stress $\tau_y = \rho g h \tan\delta$. Note: If both yield stress and friction slope are defined, the sum of the two values is taken.
bingham_viscosity	Pa s	Bingham viscosity μ_B for debris flow calculations (default = 0) with Bingham shear stress $\tau_B = \frac{3\mu_B q}{h^2}$.
		Note: If both turbulent friction (n, kst, or ks) and bingham viscosity is defined, the maximum of the two resulting stress values is taken.
roughness_factor	-	factor to estimate roughness diameter from mean grain-size
		parameters for integration of 1D models
seam_radius r	m	maximum distance from section-midpoints to cell-boundaries (of 2D mesh) where a seam (flow) can exist (used for connecting different flow models) (default = 10 m)
weir_coefficient	-	Poleni coefficient for calculation of fluxes between 1D and 2D models (default = 0.60)
>>sediment		parameters for mobile bed calculation
thcrit r	-	critical shields factor for MPM and Smart/Jäggi formula (default=0.05)

Input	Unit	Description
repose r	-	tangens of angle of repose of bank material (default=1.0)
density r	kg/m³	density of the bed material (default=2650 kg/m³)
porosity r	-	porosity of the bed material (default=0.30)
formula 'name'	-	 sediment transport formula to be used: mpm = Meyer-Peter/Müller formula. smart&jaeggi = Smart/Jäggi formula parker78 = Parker formula for uniform grain size
rock_thcrit r	-	critical shields factor for transport over bedrock (default=0.01)
rock_factor r	-	factor to account for transport over bedrock (default=1.8)
mpm_factor r	-	factor used in transport formula of Meyer-Peter/Müller (default=8.0)
mixture 'name' 0.2 0. 25. 1.	cm	grain size distribution of sediment mixture where the the grain size [cm] and the cumulative probability (sediment finer) are given in the 1^{st} and 2^{nd} column. Note: The last value in the 1^{st} column must be 1.0.
>>compute		to define parameters for unsteady flow computation
start r	h	start time of the simulation (default=0)
end r	h	time where simulation will end (default=100h)
cfl r	-	limiting CFL number to estimate size of time step (default=0.6)
frequency i	-	refresh rate of display output (default=100).
batch_mode		runs the model in batch_mode, i.e. starts the computation, stores the results on the specified file, and terminates
plot_interval	h	interval to store sediment output on file sed.out (default= 8760)
num_threads i	-	Maximum number of threads for computation (default = 1). Speeds up calculation on systems with multi-core (multi-thread) CPU's.
>>create_model		main keyword for the specification of model-specific parameters
name 'name'	string	name of model (displayed on model output)
type '2D'		 type of model: '1D' for one-dimensional flow calculations (river branch) '2D' for two-dimensional flow calculations
>>init		definition of the calculation domain
mesh 'name'	string	reads the mesh geometry from files. Supported formats are:
		<pre>.node created by program TRIANGLE (file name without suffix!) .2dm</pre>
		created by program SMS (splits 4-noded elements to triangles)
		<i>.tin</i> triangulated irregular network format (used in ems-i programs)

Input	Unit	Description
binary 'name'	string	reads mesh geometry and initial conditions (flow depths, flow and bedlevels) from a binary file created by a previous run. Note: Use either mesh or binary (not both) for the definition of the mesh geometry.
at r	h	time level r of initial condition to be read form the binary file.
bedlevel =+-<> 'name'	•	reads a mesh geometry from files created by program triangle. Depending on the operator it changes the level of the model bed. Example:
		bedlevel = 'new_dam.1'
		will read the bedlevel values from the mesh defined by the files new_dam.1.node and new_dam.1.ele. Possible operators are: = new bedlevel + lift the bedlevel - lower the bedlevel < maximum bedlevel > minimum bedlevel
		Note: Must be used in combination with mesh (not binary).
waterlevel =+-<> 'nam	me'	Same as option bedlevel (see row above) but operates on waterlevels. Note: Must be defined after definition of bedlevels.
>>polygon		used to define values that hold in a domain defined by a closed polygon. Example:
		>>polygon !keyword n 0.02 !keyword for Manning's n value 100. 150. !list of vertices of polygon 320. 165. 240. 190. 105. 155.
bedlevel =+-<> r	m	to modify the bedlevels by a value r using an operator (see keyword >>init/bedlevel for meaning of operators).
		Example: bedlevel > 321.0 ! minimum bed level is 321 m 100. 150. 320. 165. 240. 190. 105. 155.
flowdepth r	m	flow depth at start time (initial condition)
ks r	m	equivalent sand roughness diameter
kst r	SI	Manning-Strickler value
n r	SI	Manning's n value
vegetation r	1/m	vegetation factor given by the formula $vegetation = \frac{d}{a^2} c_w$
		with d = diameter of vegetation elements [m], a = distance between elements [m] and c_w = drag coefficient (range 0.8 – 1.5). Can be used to account for drift wood effects (see >>drift).

Input	Unit	Description
waterlevel r	m	water level at start time (initial condition)
bridge r	m	level of a bridge (z _{bridge}) to account for backwater effects. It accounts for the acceleration of the flow due to the reduced flow section. It does <u>not</u> account for external forces on the bridge plate or other effects such as flow contraction (gated flows).
no_seam x1 y1 x2 y2	-	closed polygon to define cells that do not connect to 1D-branches.
>>boundary		used to define (time-dependent) boundary conditions at the model boundaries that are inside a polygon. The polygon covers all the edges of the calculation mesh where the boundary condition holds. It must not match exactly with the edges. The steps are: (1) Define a boundary type (e.g. an inflow) (2) Define the location where the boundary holds by a closed polygon using the keyword location.
inflow r uniform_slope r	m³/s -	defines an inflow discharge (** for time dependent inflow). The discharge is distributed among the boundary cells assuming uniform flow conditions given the slope of the energy head (uniform_slope, default = 0.001).
critical		defines an outflow boundary with a critical flow regime (no backwater effect)
slope r	-	defines an outflow boundary with $r = energy$ slope
waterlevel r	m	defines an outflow boundary with r = water level
stage-discharge z1 q1 z2 q2 		defines an stage-discharge outflow boundary with z=water level [m] and q=discharge [m³/s]
		Example (i) Given an inflow of 100 m³/s at a boundary where the mean slope is approx. 0.5%. The boundary condition reads
		>>boundary inflow 100 uniform_slope 0.005 location 100. 150. 100. 150. 200. 200. 100. 200.

Input	Unit	Description
		Example (ii) At an outflow boundary the water level rises from 96.5 m to 98.0 m during half an hour and returns to the old value after one hour. The outflow has to be stored on the file 'waterlevel.out' for further usage. The boundary condition reads
		>>boundary waterlevel ** > 'waterlevel.out' 0.0 96.5 0.5 98.0 1.0 96.5 location 900. 150. 930. 155. 950. 240. 910. 260.
>>structure		to define internal sources and structures (culverts, weirs, controls)
<pre>point_source x y q</pre>	m,m³/s	defines an internal source with $\mathbf{x}, \mathbf{y} = \text{co-ordinates}$ of source position and $\mathbf{q} = \text{constant}$ discharge. For unsteady inflows write '**' and add a timetable of the inflows.
culvert x1 y1 x2 y2	m	defines the flow through a circular or rectangular <u>culvert</u> with $(x1,y1)$ and $(x2,y2)$ = co-ordinates of the in- and outlet. The module accounts for in- or outlet controlled flow condition. It is assumed that the vertical level of the in- and outlet corresponds to the bed level of the adjacent grid cell.
		Example: culvert x1 y1 x2 y2 > ´name´ writes the discharge through the culvert to file ´name´
diameter r	m	diameter of circular culvert (default= 1 m)
width r	m	width of rectangular culvert
height r	m	height of rectangular culvert.
n r	SI	Manning's n value of culvert [default= 0.02].
kst r	SI	Strickler value of culvert [default= 50].
inlet_loss r	-	inlet loss coefficient that depends on shape of culvert inlet. Values usually vary between 0.2 (rounded entrance) and 0.7 (sharp crested entrance)(default= 0.5).
maximum r	m³/s	maximum discharge through culvert (** for time table).

Input	Unit	Description
weir zw cw		flow over weir with zw = level of weir crest [m] and cw = poleni coefficient (default = 0.58). Flow over weir can be written to a file by adding > 'filename'. Example:
		<pre>weir 433.65 0.64 > 'weirflow.out' location</pre>
		Time_dependent weir levels are defined in a table where the time [h] and the weir_crest are given in the first and second column, respectively. Example:
		weir ** 0.64 0.0 433.65 0.8 434.15 1.5 433.80 location
gate zg cg	m,-	flow through gate with zg = level of the lower end of the sluice gate (see figure) and cg = contraction coefficient (default = 0.62). Flow through gate can be written to a file by adding > 'filename'. Example:
		<pre>gate 426.45 0.80 > 'gateflow.out' location</pre>
		Time_dependent gate openings are defined in a table where the time [h] and the opening are given in the first and second column, respectively. Example:
		gate ** 0.80 0.0 426.45 0.1 425.00 location
control_gauge x y z	m,m,m	water level control with reference level z [m] at position defined by co-ordinates x,y. Control values can be written to a file by adding $>$ 'filename'.
control_param dt u	s,m/s	free parameters for level control (fictitious weir): • dt = time lag [s] between adjustment of weir level • u = velocity [m/s] of weir level adjustment
control_init zw	m	initial level of (fictitious weir) crest (default: control level)
		Example: control_gauge 29.5 94.8 433.65 >'control.out' control_param 300. 0.002 control_init 433.20 location
location x1 y1 x2 y2		location of weir/gate/control section defined as a set of vertices with x- and y- coordinates in first and second column, respectively.

ecounts for drag forces on a pile (pier) at location x,y with denameter [m], cD = drag coefficient (default = 1.0 for circular nape). Ecounts for drag forces on a horizontal element that spans form A to B with $z = level$ [m], $d = diameter$ [m], $cD = drag$ defficient (default = 1.0 for circular shape).
om A to B with $z = level [m]$, $d = diameter [m]$, $cD = drag$
A B z d ▼
nt: Cross-piles can be used to model drag forces due to idge plates.
used to define variation of model parameters during mulation
efinition of time-dependent values of bed level using an perator (see keyword >>init/bedlevel for meaning of perators).
efinition of time-dependent values of rock level (for bed load alculation).
o-ordinates of polygon vertices to define location of variation.
Ids depth of flow to the bed level (to account for deposition of ebris flow) at time r1 [h]. Simultaneous the global (rheological) arameters can be changed: kst (r2), yield_stress r3), friction_slope (r4), and bingham_viscosity r5)
used to define effects of coarse woody debris (CWD). The hape of the CWD is a cylindrical log of which the diameter is D and the length is $L = 10*D$.
lative flow depth h/D that logs become mobile (default = 0.5)
inimum and maximum diameter of logs.
plume of CWD per hour that is given into the model. For triable values replace r by ** and add a table with the time and the corresponding load [m^3/h] in the 1^{st} and 2^{nd} column.
cation of CWD source (feeder) defined as a polygon
e following data is related to bed load calculations
ads mean diameter of grains (valid for whole domain)
ads variable grain size as a mesh created by program triangle name.node" and "name.ele"). To be used for uniform grain ze calculation (unit [cm]).

Input	Unit	Description
inflow r	kg/s	sediment inflow (r=** for unsteady inflows).
location x1 y1 x2 y2		location of sediment inflow (feeder) given as a closed polygon
rock_depth r x1 y1 x2 y2	m	defines a rock level below the initial bed level in a closed polygon defined by the co-ordinates x,y

>>output

is used to define the output from the model

prefix 'name' string results are written to file name.res (binary for review) and name.out (input reading)

interval r h interval between time steps to be stored on result file (default = 1 h)

hydrograph 'item' x y > 'filename'

writes nodal value at location (x,y) as a hydrograph table to file. Accepted items are:

1000ptod items die.	
'bedlevel'	bed level [m s. l.]
'waterlevel'	water level [m s. l.]
'depth'	flow depth [m]
'flow'	Specific flow [m2/s]
'velocity'	flow velocity [m/s]

write 'item' at r > 'filenname'

write nodal values at time $r\ [h]$ to file. See table above for accepted items.

flow > 'fname' x1 y1 x2 y2	writes total flow across a section to file 'fname'. The section must be defined as a polygon with vertices x,y. The location of edges can be displayed with Show/Mesh option. Note that the
<pre>sediment > 'fname'</pre>	direction of the flow is <u>not</u> considered writes sediment flow across a section to file 'fname'. The section
21 v1	must be defined as a nolygon with vertices v.y. The location of

x1 y1 must be defined as a polygon with vertices x,y. The location of x2 y2 edges can be displayed with Show/Mesh option. Note that the direction of the flow is <u>not</u> considered..

>> denotes the end of the input. Any further input is ignored.

<u>www.fluvial.ch</u> 05-2018 9/10

2 History

Version 3.0 (2016-)

- · unlimited model size (allocatable arrays)
- parallel processing (multi-thread CPU's)
- initial weir levels (for waterlevel controls)

Version 2.3 (2014-15)

- >>variation for time-dependent rocklevels
- · adjustment of stress terms for debris flow calculations

Version 2.2 (2011-2013)

- · module to account for coarse woody debris
- · bingham like friction law for debris flow calculations.
- >>variation for time-dependent values (replaces >>breach)

Version 2.1 (2009-2011)

- accepts mesh geometries in .2dm format created by SMS (Surface water Modeling System) and .tin format (see <u>description</u>)
- · serial linking of 2d and 1d models
- · cross-piles to account for hydraulic resistance of horizontal structures such as bridges
- export of results in (ESRI) shape format
- · simplified input for flow over weirs and gated flows
- modeling of water level controls (e.g. hydro power stations)
- modeling debris flow with two-parameter approach (turbulent & yield)

Version 2.0 (2006-2009)

- considering multiple models (1D and 2D)
- · accepts project files to change river bed topography
- new flow option

Version 1.0 - 1.3 (1999-2005)

- · stage-discharge outflow boundary
- · development of breaches during simulation time
- · export of hydrograph tables
- variable bed_evolution values and boundary conditions
- bed armouring (2-grain-size model)
- automatic generation of animated output (movies)
- · perspective views with shading
- modelling of precipitation/evaporation
- energy losses due to vegetation
- multiple (independent) meshes
- mobile bèd module
- improved interpolation of bed level for narrow dams
- improved graphic routines
- · output of multiple time steps on same result file
- · logarithmic friction law
- · backwater effects due to bridges
- time dependent boundary conditions
- · distributed inflow discharge assuming uniform flow conditions
- culvert flow to connect model domains
- · weir and gated flow over cell edges
- friction values (kst or n) defined with closed polygons (mesh independent)
- wetting and drying of cells